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Abstract. Domain growth in the three-dimensional random-field lsing model is investigated 
by Monte Carlo simulation. The time dependence of the average domain size is monitored 
following a quench to a low temperature. The logarithmic growth predicted by the theories 
of Villain and of Grinstein and Fernandez is observed. The dynamical scaling of the struc- 
ture factor is also studied and found to be well satisfied. The field strength dependence of 
the scaling function is found to be weak. 

1. Introduction 

In recent years there has been a great interest in random-field king (RFIM) systems 
both theoretically and experimentally (for reviews, see [I]). It is now well established 
that in three dimensions the RFIM is ordered at low temperatures for small field 
strengths, while in two dimensions there is no long-range order for any finite field 
strength [l-31. Thus, the lower critical dimension of this model is now known to be 2. 

Non-equilibrium properties of the RFIM have also been a focus of interest [l]. The 
presence of a random field strongly affects the dynamics of growing domains which are 
formed when the system is quenched from a disordered state to a low temperature state. 
In the pure (zero-field) system, the average domain size R obeys the well known Lifshitz- 
Allen-Cahn (uc) growth law [4]: 

R( t )  -f"2 (1.1) 

where t is the time. In the RFIM, the curvature-driven growth mechanism that leads to 
(1.1) is impeded by the random field induced roughening of the domain walls. In a 
late-time regime, the domains tend to get pinned in favourable locations and further 
growth relies on thermal fluctuations to surmount the energy barriers introduced by 
local fluctuations of the random field [ I ] .  

Several theories have been developed to analyse the time dependence of R. Grant 
and Gunton [5] investigated the growth using a generalized LAC analysis. Their theory, 
which is expected to apply in the early stages of growth [5, 71, predicts that in three 
dimensions the growth law.is unchanged from the zero-field result (1.1) except for a 
field-dependent reduction in the amplitude: 

R(t)-[A-Bh2]t1'2 (1.2) 
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where h is the field strength and A and B are field-independent constants. In two 
dimensions, the Grant and Gunton prediction for R ( t )  differs from (1.2) by a time- 
dependent term in the amplitude and yields a maximum size for the domains in 
equilibrium. 

Villain [6] considered a continuum version of the RFIM and investigated the kinetics 
of the interfaces in a late-time regime where pinning is effective. By estimating the 
maximum height of the scale-dependent energy barriers encountered by the domain 
walls and using the Arrhenius law, he deduced a logarithmic dependence for R, indepen- 
dent of dimensionality, 

T 
h” R(t) -- In t (1.3) 

where v ,  =2 and Tis the temperature. 
Grinstein and Femandez [7] used a discrete-lattice RFIM and studied the domain 

growth in the framework of a solid on solid model. They argued that at low temperatures 
three-dimensional domain walls decay through peeling of two-dimensional layers. They 
estimated the typical decay time of such layers using an analysis similar to that of 
Villain’s in the continuum case. Their result coincided with (1.3) apart from a factor 
of 2. For shorter times when the decay of two-dimensional layers is dominated by the 
diffusion of isolated kinks on their boundaries, they predicted a logarithm-square time 
dependence for R: 

R(t ) - -  T2 ln2t 
4hv1 

where v2=2. 
In contrast to the above predictions, experiments on dilute antiferromagnets in 

uniform fields, which are physical realizations of the RFIM, have shown that the average 
size of the domains does not change with time when the system is cooled to a low 
temperature in the presence of an external field [ I ,  81. The discrepancy is believed to 
be due to the pinning effect of the vacancies that are present in dilute antiferromagnets 
but not in the RFIM [l ,  91. 

Domain growth in the RFIM has been the subject of several numerical simulations 
as well. The two-dimensional case has been studied extensively and the predictions of 
the above theories have been tested. Equation (1.4) was verified by Pytte and Fernandez 
[IO]. Chowdury and Stauffer [ 111, and Anderson [IZ]. The logarithmic growth (1.3) 
was observed by Anderson [12], O@z et af [I31 and recently by Puri and Parekh [14]. 
The dynamical scaling behaviour of the structure factor was also studied. For high field 
‘strengths, evidence for a breakdown of scaling was obtained [13-15]. For smaller fields, 
the scaling was found to be well satisfied with a scaling function that is independent of 
the field strength [14]. There have been fewer studies in the three-dimensional case. 
Stauffer et a1 [I61 qualitatively pointed out the slowness of the growth. Pytte and 
Fernandez [lo] studied the decay times of small domains by Monte Carlo simulation 
and observed a logarithm-square growth (1.4). Chowdury and Stauffer [I I] investigated 
the growth by measuring the relaxation time of magnetization and tested the various 
theories. Their results were consistent with a power law growth at short times and a 
logarithm-square growth (1.4) at later times. 

A logarithmic dependence of R on time as in ( 1.3) has not been observed in the above 
three-dimensional simulations. Thus, the prediction in (1.3) has been left unverified. As 
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well the scaling behaviour of the structure factor in three dimensions has not been 
studied. In order to investigate these features and to study the various growth regimes 
in more detail we have here carried out further Monte Carlo simulations of the three- 
dimensional kinetic RFIM. (We have only considered the case with a non-conserved 
order parameter.) To be able to investigate various stages of the growth within the 
duration of our simulations we have considered a wide range of field strengths from 
zero to large values close to the phase boundary. Our main results are as follows. For 
some large field strengths, we have obtained fairly extended intervals of time in which 
our data are consistent with a logarithmic growth (1.3). We have also observed intervals 
of logarithmic-square growth ( I  -4) for several intermediate fields. The short-time growth 
is consistent with the modified LAC formula (1.2) only for small field strengths. Finally, 
we have found that the dynamical scaling of the structure factor is well satisfied with 
a scaling function that is weakly dependent on the field strength. 

In section 2 we describe the model and the method of numerical calculations. In 
section 3 we present our results. We conclude with a brief summary in section 4. 

2. Model and the method of calculation 

The Hamiltonian for the RFIM is given by 

X/J= - oiq- 1 h p ,  (2.1) 
<U> I 

where ui=f 1, J is the coupling constant and the interaction sum runs over nearest- 
neighbour pairs of N spins. The dimensionless random magnetic fields hi are assumed 
to take on the values f h  randomly at each site and the values at different sites are 
uncorrelated. Thus, 

(hi) = 0 (2.24 

and 

(hihj) =h26@. (2.26) 

The dynamics is generated by the standard Monte Carlo spin-flip algorithm [17] with 
Glauber flip probabilities: 

W , = i [ l  -tanh(AEi/2kT)] (2.3) 

where k is the Boltzmann constant, Tis the temperature and AE, is the energy change 
that would result from flipping the spin or. Time is measured in Monte Carlo steps per 
spin (MCS), which involves N attempts to flip randomly selected spins. We used a 
simple cubic lattice of linear size L = I V ” ~ = ~ ~  with periodic boundary conditions and 
employed the multispin coding technique. The random field variables were generated 
at the beginning of each run according to the distribution (2.2), and this configuration 
remained fixed for the duration of the run: We used a random initial distribution for 
the spins,-corresponding to an infinite initial temperature. For the final temperature of 
the quench we chose T= 1.5J/k, which is roughly one-third of the critical temperature 
of the pure model. To find the approximate location of the phase boundary at this 
temperature, we computed the equilibrium magnetization by making runs with 250 000 
MCS, discarding the first 100 000 MCS for equilibrium. (We used a completely ordered 
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Table 1. Equilibrium magnetization for several field strengths near the phase boundary. 

1, M ... 

2.20 0.89*0.01 
2.25 0.66+0.04 
2.30 0.39+0.06 
2.35 0.23*0.05 .... 
2.40 0.04*0.01 

initial state for these particular runs.) The data are averaged over five independent 
runs. Our results summarized in table 1 suggest that the critical field is approximately 
located at h,=2.3. 

We monitored the time dependence of the domain size R for a variety of field 
strengths and for times up to 20 000 MCS. The averages were calculated over an ensemble 
of at least 200 runs for each field strength we considered. (The statistical error in R 
based on sample to sample variations was less than 5%) Our simulations were entirely 
carried out on PC microcomputers over the course of many months. (The time-critical 
parts of the computer program were written in assembly code. The program produced 
about 9 x IO5 spin updates per second on a 50 MHz machine). 

We have determined the average domain size by the relation [ 181 

(2.4) 

which corresponds to the structure factor evaluated at zero wavevector. (R is measured 
in units of the lattice spacing.) We have also computed other length scales derived from 
the perimeter area density and the moments of the structure factor with respect to 
wavenumber. We have found that the known results in the zero-field case, i.e. the LAC 
growth and the dynamical scaling of the structure factor were best reproduced by using 
the length scale given in (2.4). Thus, we will discuss our results here in terms of this 
length scale only. 

To investigate the scaling behaviour we have also computed the non-equilibrium 
structure factor 

where crk is the Fourier transform of crj: 
N 

ok= criexp(ik*ri). 
i- I 

(2.5) 

Here rj and k denote positions on the space and wavevector lattices, respectively. We 
have performed a circular average on the s(k,  f).The circularly averaged quantity will 
be denoted by S(k, 1). Here, the wavenumber k = 2 z j / L  with j = O ,  1,2,. . . , j,,,,,, where 
jmax is the integer fraction of $L/2. Let us recall that in d dimensions the dynamical 
scaling 'condition states that 1191 

S(k, f ) = R d ( f ) F ( k R ( / ) )  (2.7) 
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where F(x) is the scaling function. Thus, here we have computed the scaling function 
in the form 

30 
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0 

where x=kRf t ) .  We discuss our results in the next section. 
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3. Results 

We first present our zero-field ( h = O )  result for R(t) ,  which we have included here as 
' a check on our method against known results. As seen in figure 1, a clear LAC growth 

35 s 7  
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Figure 2. Zem-field scaling function. The full line is the theoretical prediction of OJK [ZO]. 

500 MCS and for some relatively small field strengths ( h  4 1.0). We obtain a fairly straight 
curve for h=0.2 and to a lesser extent for h=0.4.  AS h is increased to higher values, 
the curvatures of the plots rapidly increase, confining the tl" growth regime to extremely 
early times, as can be seen from figure 3. Thus, (1.2) appears to be a reasonable 
description of the short-time growth only for field strengths h60.4.  We have not been 
able to quantitatively investigate the amplitude in (1.2). We have found that a somewhat 

a i -  .::.: 

Figure 3. R ( f )  versus r l n  for several field strengths 11. 
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better approximation for R( t )  in the regime t 6 500 MCS and~h 4 1 .O is a power law growth 
with an exponent which uniformly decreases from its initial value of 0.5 as the field 
strength is increased from zero. This power law regime may represent a cross-over 
behaviour between the initial LAC growth and the activated growth regime which is 
expected to apply at later times. 

We now consider the growth for longer times up to t=5000 MCS and investigate 
the validity of (1.4). Figure 4 shows R(t) as a function of In2 f for several field strengths 

h 

v 
c, 

e: 
25 20 I 
‘I; LO . 

20 30 40 50 60 70 

2 In t 
Figure 4. R ( f )  versus In2 r for several field strengths 6. Intervals in which the growth is 
approximately In2 f are indicated by full lines. 

in the range 1.2ShS2.0. It is seen that for each field strength an interval can be 
obtained in which the data are consistent with a InZ t growth, as indicated by the full 
lines. (The criterion for determining the fitting intervals is inevitably somewhat arbi- 
trary. We sought to maximize the size of the interval while still maintaining a good fit.) 
We note that the observed In2 t growth interval shifts towards earlier times as the field 
strength is increased. This behaviour can be qualitatively understood by considering 
the fact that as h is increased, the retarding effects of the random field on the curvature- 
driven growth are expected to become appreciable at smaller domain sizes and thus at 
earlier times. 

As can be clearly seen in figure 4 for h= 1.8 and h = 2.0, the In’ t growth eventually 
crosses over to a slower growth regime. We have investigated the validity of the logarith- 
mic growth (1.3) in this regime for times up to t = 20 000 MCS and for field strengths 
in the range 1.6GhG2.4. As shown in figure 5, we do obtain intervals in which the 
data are consistent with a logarithmic growth. As h is increased from 1.6, the lower 
boundary of the In t growth interval rapidly shifts towards earlier times, resulting in a 
fairly extended In t growth regime for h=2.0. For h=2.2, our data indicate an even 
slower growth than In I for late times. This further slowing of the growth may be due 
to the effects of critical fluctuations in view of the fact that h=2.2 lies in close vicinity 
to the phase boundary h,-2.3 according to our equilibrium results mentioned earlier. 
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Figure 5. R(f) versus Int for Several field strengths I!. Inlervals in which the growlh is 
approximately In t are indicated by full lines. 

At h=2.4, which is on the disordered side of the phase boundary, R ( t )  indeed grows 
extremely slowly after initial times, displaying a final approach to equilibrium with a 
rather small equilibrium value. 

We have not been able to investigate the validity of (1.3) or (1.4) for small field 
strengths ( h  < l.O), since this would require much longer simulation times and also much 
larger lattices to avoid the finite-size effects. Due to the relatively small number of h- 
values for which we obtained a In2 t or In t growth interval and to the difficulty in 
judging the precise locations of such intervals, we have also not been able to make an 
accurate analysis of the exponents v ,  and v2 in (1.3) and (1.4). An inspection of the 
slopes in figures 4 and 5 nevertheless gives the rough estimates vI =3.9 and vz=2.1, to 
be compared with the Villain and Grinstein and Fernandez prediction of v I  = v2=2. 
We note that the exponents v, and v2 determine the location of the cross-over regime 
between (1.3) and (1.4), as can  be 'seen from the characteristic cross-over time 
r-exp(4h"'-"'/T), which one can derive from (1.3) and (1.4). A higher value for v, 
compared to v2 ,  as we obtain here, thus means that the cross-over time should decrease 
with increasing field strength. We note that this property of the cross-over time is clearly 
implied by our results contained in figures 4 and 5 ,  in view of the shift of the observed 
In2 f and In 1 growth intervals towards earlier times as the field strength is increased. 
The displacement of the various growth regimes towards earlier times with increasing 
field strength has also been observed in simulations of the two-dimensional RFIM 112, 
131. 

We now tum to the scaling behaviour of the structure factor. Our scaling function 
data indicate that the scaling persists for non-zero field strengths. We have observed 
fairly good scaling for all the field strengths we have considered above. The onset of 
the scaling regime rapidly shifts to later times as h is increased from zero. In figures 
6(a) and 6(b), we show our scaling function data for h=1.6 and h=2.2. We have 
included the zero-field scaling function curve in these figures for comparison. (We 

' 
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Figure 6. Scaling function for (0) k =  1.6 and (b )  b=2.2.  The full line shows the zero-field 
scaling function, which is included for comparison. 

5 

present our scaling function data on a semi-logarithmic scale so as to display the large- 
x region more clearly.) We recall that in two-dimensions Puri and Parekh [ 141 found 
(in a continuum version of the RFIM) no field dependence for the scaling function for 
the field strengths they considered. Here we obtain a similar behaviour for h< 1.6, i.e. 
the scaling function does not show any appreciable deviation from the zero-field result 
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for field strengths up to h c= 1.6. As h is increased to higher values, the scaling function 
does deviate from the zero-field curve. However, the deviation is very gradual and even 
for large field strengths the differences are only appreciable in the tail (large x) region, 
as can be seen in figure 6b for h 4 . 2 .  Thus, the field strength of the scaling function 
appears to be fairly weak, in sharp contrast with the drastic field dependence of the 
average domain size discussed above. 

4. Conclusions 

We have studied the domain growth in the three-dimensional RFIM through Monte 
Carlo simulation. Our results are in general consistent with theories of Villain [6] and 
of Grinstein and Fernandez [7]. In particular, the predicted logarithmic growth of the 
average domain size is observed. We have also studied the scaling of the structure factor 
and found that the scaling is well satisfied as in the case of the pure model. The field 
strength dependence of the scaling function is observed to be weak. Further theoretical 
and numerical work is necessary for a more accurate investigation of the prefactors in 
(1.3) and (1.4) and also for a quantitative analysis of the cross-over behaviour between 
different growth regimes as well as for an investigation of the temperature dependence 
of the growth. 
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